Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.749
Filtrar
1.
J Dev Orig Health Dis ; 15: e9, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721989

RESUMO

Sodium overload during childhood impairs baroreflex sensitivity and increases arterial blood pressure and heart rate in adulthood; these effects persist even after high-salt diet (HSD) withdrawal. However, the literature lacks details on the effects of HSD during postnatal phases on cardiac ischemia/reperfusion responses in adulthood. The current study aimed to elucidate the impact of HSD during infancy adolescence on isolated heart function and cardiac ischemia/reperfusion responses in adulthood. Male 21-day-old Wistar rats were treated for 60 days with hypertonic saline solution (NaCl; 0.3M; experimental group) or tap water (control group). Subsequently, both groups were maintained on a normal sodium diet for 30 days. Subsequently, the rats were euthanized, and their hearts were isolated and perfused according to the Langendorff technique. After 30 min of the basal period, the hearts were subjected to 20 min of anoxia, followed by 20 min of reperfusion. The basal contractile function was unaffected by HSD. However, HSD elevated the left ventricular end-diastolic pressure during reperfusion (23.1 ± 5.2 mmHg vs. 11.6 ± 1.4 mmHg; p < 0.05) and increased ectopic incidence period during reperfusion (208.8 ± 32.9s vs. 75.0 ± 7.8s; p < 0.05). In conclusion, sodium overload compromises cardiac function after reperfusion events, diminishes ventricular relaxation, and increases the severity of arrhythmias, suggesting a possible arrhythmogenic effect of HSD in the postnatal phases.


Assuntos
Arritmias Cardíacas , Traumatismo por Reperfusão Miocárdica , Ratos Wistar , Animais , Ratos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Diástole/fisiologia , Cloreto de Sódio na Dieta/efeitos adversos , Frequência Cardíaca/fisiologia
2.
J Am Heart Assoc ; 13(9): e033744, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38686853

RESUMO

BACKGROUND: The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats. METHODS AND RESULTS: We examined the effects of butyrate on (1) in vivo hemodynamics using parallel echocardiographic and invasive blood pressure measurements, (2) isolated perfused hearts in Langendorff systems under physiological conditions and after ischemia and reperfusion, and (3) isolated coronary arteries mounted in isometric wire myographs. We tested Na-butyrate added to injection solutions or physiological buffers and compared its effects with equimolar doses of NaCl. Butyrate at plasma concentrations of 0.56 mM increased cardiac output by 48.8±14.9%, stroke volume by 38.5±12.1%, and left ventricular ejection fraction by 39.6±6.2%, and lowered systemic vascular resistance by 33.5±6.4% without affecting blood pressure or heart rate in vivo. In the range between 0.1 and 5 mM, butyrate increased left ventricular systolic pressure by up to 23.7±3.4% in isolated perfused hearts and by 9.4±2.9% following ischemia and reperfusion, while reducing myocardial infarct size by 81.7±16.9%. Butyrate relaxed isolated coronary septal arteries concentration dependently with an EC50=0.57 mM (95% CI, 0.23-1.44). CONCLUSIONS: We conclude that butyrate elevates cardiac output through mechanisms involving increased cardiac contractility and vasorelaxation. This effect of butyrate was not associated with adverse myocardial injury in damaged hearts exposed to ischemia and reperfusion.


Assuntos
Butiratos , Cardiotônicos , Contração Miocárdica , Vasodilatação , Vasodilatadores , Função Ventricular Esquerda , Animais , Masculino , Contração Miocárdica/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Cardiotônicos/farmacologia , Butiratos/farmacologia , Vasodilatadores/farmacologia , Preparação de Coração Isolado , Ratos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Débito Cardíaco/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Ratos Wistar , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Relação Dose-Resposta a Droga , Modelos Animais de Doenças , Ratos Sprague-Dawley
3.
Cardiovasc Toxicol ; 24(5): 481-498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38647950

RESUMO

The hearts of subjects with diabetes are vulnerable to ischemia-reperfusion injury (IRI). In contrast, experimentally rodent hearts have been shown to be more resistant to IRI at the very early stages of diabetes induction than the heart of the non-diabetic control mice, and the mechanism is largely unclear. Ferroptosis has recently been shown to play an important role in myocardial IRI including that in diabetes, while the specific mechanisms are still unclear. Non-diabetic control (NC) and streptozotocin-induced diabetic (DM) mice were treated with the antioxidant N-acetylcysteine (NAC) in drinking water for 4 week starting at 1 week after diabetes induction. Mice were subjected to myocardial IRI induced by occluding the coronary artery for 30 min followed by 2 h of reperfusion, subsequently at 1, 2, and 5 week of diabetes induction. The post-ischemic myocardial infarct size in the DM mice was smaller than that in NC mice at 1 week of diabetes but greater than that in the NC mice at 2 and 5 week of diabetes, which were associated with a significant increase of ferroptosis at 2 and 5 week but a significant reduction of ferroptosis at 1 week of diabetes. NAC significantly attenuated post-ischemic ferroptosis as well as oxidative stress and reduced infarct size at 2 and 5 week of diabetes. Application of erastin, a ferroptosis inducer, reversed the cardioprotective effects of NAC. It is concluded that increased oxidative stress and ferroptosis are the major factors attributable to the increased vulnerability to myocardial IRI in diabetes and that attenuation of ferroptosis represents a major mechanism whereby NAC confers cardioprotection against myocardial IRI in diabetes.


Assuntos
Acetilcisteína , Antioxidantes , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ferroptose , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Acetilcisteína/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Masculino , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Antioxidantes/farmacologia , Ferroptose/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/tratamento farmacológico , Fatores de Tempo , Miocárdio/patologia , Miocárdio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
4.
Can J Physiol Pharmacol ; 102(5): 331-341, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118123

RESUMO

Extracellular potassium concentration might modify electrophysiological properties in the border zone of ischemic myocardium. We evaluated the depolarization and repolarization characteristics across the ischemic-normal border under [K+] variation. Sixty-four-lead epicardial mapping was performed in 26 rats ([K+] 2.3-6.4 mM) in a model of acute ischemia/reperfusion. The animals with [K+] < 4.7 mM (low-normal potassium) had an ischemic zone with ST-segment elevation and activation delay, a border zone with ST-segment elevation and no activation delay, and a normal zone without electrophysiological abnormalities. The animals with [K+] >4.7 mM (normal-high potassium) had only the ischemic and normal zones and no transitional area. Activation-repolarization intervals and local conduction velocities were inversely associated with [K+] in linear regression analysis with adjustment for the zone of myocardium. The reperfusion extrasystolic burden (ESB) was greater in the low-normal as compared to normal-high potassium animals. Ventricular tachycardia/fibrillation incidence did not differ between the groups. In patch-clamp experiments, hypoxia shortened action potential duration at 5.4 mM but not at 1.3 mM of [K+]. IK(ATP) current was lower at 1.3 mM than at 5.4 mM of [K+]. We conclude that the border zone formation in low-normal [K+] was associated with attenuation of IK(ATP) response to hypoxia and increased reperfusion ESB.


Assuntos
Potenciais de Ação , Isquemia Miocárdica , Potássio , Animais , Potássio/sangue , Potássio/metabolismo , Masculino , Ratos , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/sangue , Isquemia Miocárdica/metabolismo , Potenciais de Ação/fisiologia , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos Wistar
5.
Pharm Biol ; 60(1): 553-561, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35244510

RESUMO

CONTEXT: Acacetin is a natural source of flavonoids with anti-inflammatory and antioxidant effects. OBJECTIVE: This study determines acacetin's protective effect and mechanism on myocardial ischaemia/reperfusion (I/R) injury. MATERIALS AND METHODS: Sprague-Dawley rats were divided into sham and I/R injury and treatment with acacetin. Acacetin (10 mg/kg) was subcutaneously injected for 7 days. ECG and echocardiography were conducted to determine arrhythmia and heart function. The pathological characters of the heart were determined with triphenyl tetrazolium chloride staining, Haematoxylin & Eosin staining, and Masson staining. Expression of proteins in infarct tissues was examined with western blots. RESULTS: Administrated with acacetin in I/R rats significantly reduced the arrhythmia score from 4.90 to 2.50 and the reperfusion arrhythmia score from 3.79 to 1.82 in the vehicle or the acacetin group, respectively. LVEF was improved from 33.5% in the I/R group to 43.7% in the acacetin group, LVFS was increased from 16.4% to 24.5%, LVIDs was decreased from 6.5 to 5.3 mm. The inflammatory cell infiltration, myocardial fibrosis, and collagen 1 and 3 were reduced by acacetin. Acacetin promoted SOD and decreased MDA. In myocardial tissues, the expression level of TLR4 and IL-6 were restrained, and IL-10 was promoted. Apoptotic protein Bax was suppressed, and anti-apoptotic protein Bcl-2 was promoted in the acacetin group. Interestingly, the transcription factor Nrf-2/HO-1 pathway was also reversed by acacetin. DISCUSSION AND CONCLUSION: Our findings indicated that acacetin has a potential therapeutic effect in clinical application on treating I/R-induced heart injury.


Assuntos
Apoptose/efeitos dos fármacos , Flavonas/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
6.
Pharm Biol ; 60(1): 384-393, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35188856

RESUMO

CONTEXT: Therapeutic lymphangiogenesis is a new treatment for cardiovascular diseases. Our previous study showed M2b macrophages can alleviate myocardial ischaemia/reperfusion injury (MI/RI). However, the relation between M2b macrophages and lymphangiogenesis is not clear. OBJECTIVE: To investigate the effects of M2b macrophages on lymphangiogenesis after MI/RI. MATERIALS AND METHODS: Forty male Sprague-Dawley (SD) rats were randomized into Sham operation group (control, n = 8), MI/RI group (n = 16) and M2b macrophage transplantation group (n = 16). M2b macrophages (1 × 106) in 100 µL of normal saline or the same volume of vehicle was injected into the cardiac ischaemic zone. Two weeks later, echocardiography and lymphatic counts were performed, and the extent of myocardial fibrosis and the expression of vascular endothelial growth factor C (VEGFC) and VEGF receptor 3 (VEGFR3) were determined. In vitro, lymphatic endothelial cells (LECs) were cultured with M2b macrophages for 6-24 h, and the proliferation, migration and tube formation of the LECs were assessed. RESULTS: In vivo, M2b macrophage transplantation increased the level of lymphangiogenesis 2.11-fold, reduced 4.42% fibrosis, improved 18.65% left ventricular ejection fraction (LVEF) and upregulated the expressions of VEGFC and VEGFR3. In vitro, M2b macrophage increased the proliferation, migration, tube formation and VEGFC expression of LECs. M2b macrophage supernatant upregulated VEGFR3 expression of LECs. DISCUSSION AND CONCLUSIONS: Our study shows that M2b macrophages can promote lymphangiogenesis to reduce myocardial fibrosis and improve heart function, suggesting the possible use of M2b macrophage for myocardial protection therapy.


Assuntos
Linfangiogênese/fisiologia , Macrófagos/transplante , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Ecocardiografia , Células Endoteliais/metabolismo , Fibrose , Masculino , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia
7.
Molecules ; 27(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35164296

RESUMO

The transient vanilloid receptor potential type 1 (TRPV1) regulates neuronal and vascular functions mediated by nitric oxide (NO) and by the calcitonin gene-related peptide (CGRP). Here, we study the participation of TRPV1 in the regulation of myocardial injury caused by ischemia-reperfusion and in the control of NO, tetrahydrobiopterin (BH4), the cGMP pathway, CGRP, total antioxidant capacity (TAC), malondialdehyde (MDA) and phosphodiesterase-3 (PDE-3). Isolated hearts of Wistar rats perfused according to the Langendorff technique were used to study the effects of an agonist of TRPV1, capsaicin (CS), an antagonist, capsazepine (CZ), and their combination CZ+CS. The hearts were subjected to three conditions: (1) control, (2) ischemia and (3) ischemia-reperfusion. We determined cardiac mechanical activity and the levels of NO, cGMP, BH4, CGRP, TAC, MDA and PDE-3 in ventricular tissue after administration of CS, CZ and CZ+CS. Western blots were used to study the expressions of eNOS, iNOS and phosphorylated NOS (pNOS). Structural changes were determined by histological evaluation. CS prevented damage caused by ischemia-reperfusion by improving cardiac mechanical activity and elevating the levels of NO, cGMP, BH4, TAC and CGRP. TRPV1 and iNOS expression were increased under ischemic conditions, while eNOS and pNOS were not modified. We conclude that the activation of TRPV1 constitutes a therapeutic possibility to counteract the damage caused by ischemia and reperfusion by regulating the NO pathway through CGRP.


Assuntos
Coração/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Canais de Cátion TRPV/metabolismo , Animais , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
8.
Can J Physiol Pharmacol ; 100(3): 252-258, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34990309

RESUMO

This study was designed to assess the effect of soya phosphatidylcholine (SPC) against ischemia/reperfusion (I/R) injury and the possible underlying mechanism using experimental and computational studies. I/R injury was induced by global ischemia for 30 min followed by reperfusion for 120 min. The perfusion of the SPC was performed for 10 min before inducing global ischemia. In the mechanistic study, the involvement of specific cellular pathways was identified using various inhibitors such as ATP-dependent potassium channel (KATP) inhibitor (glibenclamide), protein kinase C (PKC) inhibitor (chelerythrine), non-selective nitric oxide synthase inhibitor (L-NAME), and endothelium remover (Triton X-100). The computational study of various ligands was performed on toll-like receptor 4 (TLR4) protein using AutoDock version 4.0. SPC (100 µM) significantly decreased the levels of cardiac damage markers and %infarction compared with the vehicle control (VC). Furthermore, cardiodynamics (indices of left ventricular contraction (dp/dtmax), indices of left ventricular relaxation (dp/dtmin), coronary flow, and antioxidant enzyme levels were significantly improved as compared with VC. This protective effect was attenuated by glibenclamide, chelerythrine, and Triton X-100, but it was not attenuated by L-NAME. The computational study showed a significant bonding affinity of SPC to the TLR4-MD2 complex. Thus, SPC reduced myocardial I/R injury in isolated perfused rat hearts, which might be governed by the KATP channel, PKC, endothelium response, and TLR4-MyD88 signaling pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Fosfatidilcolinas/uso terapêutico , Animais , Cardiotônicos , Simulação por Computador , Técnicas In Vitro , Masculino , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/farmacologia , Ratos Wistar , Receptor 4 Toll-Like
9.
Int J Med Sci ; 19(1): 65-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975299

RESUMO

Reperfusion injury following myocardial ischemia remained a challenge for optimal treatment of myocardial infarction. Ginsenosides Rb (G-Rb), the primary components of ginsenoside, have been reported to exert cardioprotective effects via numerous mechanisms. G-Rb1 mediate cardioprotective effects via various signaling pathways, including mitochondrial apoptotic pathway, PI3K/Akt/mTOR, HIF-1α and GRF91, RhoA, p38α MAPK, and eNOS. G-Rb2 activates the SIRT-1 pathway, while G-Rb3 promotes both JNK-mediated NF-κB and PERK/Nrf2/HMOX1. Generally, ginsenosides Rb1, 2, and 3 modulates oxidative stress, inflammation, and apoptosis, contributing to the improvement of structural, functional and biochemical parameters. In conclusion, G-Rb, particularly G-Rb1, have vast potential as a supplement in attenuating reperfusion injury. Translation into a clinical trial is warranted to confirm the beneficial effects of G-Rb.


Assuntos
Ginsenosídeos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Apoptose , Cardiotônicos/efeitos adversos , Cardiotônicos/uso terapêutico , Ginsenosídeos/efeitos adversos , Ginsenosídeos/uso terapêutico , Inflamação/fisiopatologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Estresse Oxidativo , Transdução de Sinais
10.
Cardiovasc Drugs Ther ; 36(1): 15-29, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064235

RESUMO

PURPOSE: Cardiac dysfunction can occur as a sequela of a state of prolonged pressure overload and postischemic injury. Flavonoids such as quercetin may be protective against cardiovascular disease. This study aimed to systematically assess the effects of quercetin on cardiac function in pressure overload and postischemia-reperfusion injury in rodents. METHODS: A systematic search of the literature up to May 2020 was conducted in PubMed, Ovid Medline, EBSCOhost, Scopus, and the Cochrane Library to identify relevant published studies on quercetin and cardiac function using standardized criteria. Meta-analyses were performed on animal studies of pressure overload and ischemia-reperfusion (I/R) injury. RESULTS: The effects of quercetin on cardiac function in both models were qualitatively reported in 14 studies. The effects of quercetin in four pressure-overload model studies involving 73 rodents and eight I/R-injury model studies involving 120 rodents were quantitatively assessed by meta-analysis. Quercetin improved the overall cardiac function in both pressure overload (n = 4 studies, n = 73 rodents; SMD = - 1.50; 95% CI: - 2.66 to - 0.33; P < 0.05; I2 = 74.05%) and I/R injury (n = 8 studies, n = 120 rodents; SMD = - 1.81; 95% CI: - 3.05 to - 0.56; P < 0.01; I2 = 84.93%) models. The improvement was associated with amelioration in cardiac structure in the pressure-overload model and both systolic and diastolic functioning in the I/R-injury model. CONCLUSION: The present meta-analysis suggested that quercetin has beneficial effects for improving cardiac left ventricular dysfunction in both pressure-overload and I/R-injury models.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Quercetina/farmacologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Camundongos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos , Disfunção Ventricular Esquerda/fisiopatologia , Pressão Ventricular/efeitos dos fármacos
11.
Cardiovasc Drugs Ther ; 36(1): 1-13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32648168

RESUMO

PURPOSE: Mitochondrial reactive oxygen species (ROS) production upon reperfusion of ischemic tissue initiates the ischemia/reperfusion (I/R) injury associated with heart attack. During ischemia, succinate accumulates and its oxidation upon reperfusion by succinate dehydrogenase (SDH) drives ROS production. Inhibition of succinate accumulation and/or oxidation by dimethyl malonate (DMM), a cell permeable prodrug of the SDH inhibitor malonate, can decrease I/R injury. However, DMM is hydrolysed slowly, requiring administration to the heart prior to ischemia, precluding its administration to patients at the point of reperfusion, for example at the same time as unblocking a coronary artery following a heart attack. To accelerate malonate delivery, here we developed more rapidly hydrolysable malonate esters. METHODS: We synthesised a series of malonate esters and assessed their uptake and hydrolysis by isolated mitochondria, C2C12 cells and in mice in vivo. In addition, we assessed protection against cardiac I/R injury by the esters using an in vivo mouse model of acute myocardial infarction. RESULTS: We found that the diacetoxymethyl malonate diester (MAM) most rapidly delivered large amounts of malonate to cells in vivo. Furthermore, MAM could inhibit mitochondrial ROS production from succinate oxidation and was protective against I/R injury in vivo when added at reperfusion. CONCLUSIONS: The rapidly hydrolysed malonate prodrug MAM can protect against cardiac I/R injury in a clinically relevant mouse model.


Assuntos
Cardiotônicos/farmacologia , Malonatos/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Cardiotônicos/síntese química , Cardiotônicos/química , Linhagem Celular , Modelos Animais de Doenças , Ésteres/química , Feminino , Humanos , Masculino , Malonatos/síntese química , Malonatos/química , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Pró-Fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/metabolismo
12.
Microvasc Res ; 139: 104266, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688627

RESUMO

The no-reflow phenomenon induced by ischemia-reperfusion (I/R) injury seriously limits the therapeutic value of coronary recanalization and leads to a poor prognosis. Previous studies have shown that luteolin (LUT) is a vasoprotective factor. However, whether LUT can be used to prevent the no-reflow phenomenon remains unknown. Positron emission tomography perfusion imaging, performed to detect the effects of LUT on the no-reflow phenomenon in vivo, revealed that LUT treatment was able to reduce the no-reflow area in rat I/R models. In vitro, LUT was shown to reduce the hypoxia-reoxygenation injury-induced endothelial permeability and apoptosis. The levels of malondialdehyde, reactive oxygen species and NADPH were also measured and the results indicated that LUT could inhibit the oxidative stress. Western blot analysis revealed that LUT protected endothelial cells from I/R injury by regulating the Wnt/ß-catenin pathway. Overall, we concluded that the use of LUT to minimize I/R induced microvascular damage is a feasible strategy to prevent the no-reflow phenomenon.


Assuntos
Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Luteolina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fenômeno de não Refluxo/prevenção & controle , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Imagem de Perfusão do Miocárdio , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fenômeno de não Refluxo/diagnóstico por imagem , Fenômeno de não Refluxo/metabolismo , Fenômeno de não Refluxo/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
13.
Biomed Pharmacother ; 145: 112432, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798472

RESUMO

Calenduloside E (CE) is a saponin isolated from Aralia elata (Miq) Seem, which has anti-cardiovascular disease effects. This study aims to evaluate the anti-myocardial ischemia-reperfusion injury (MIRI) mechanisms of CE and regulation of BAG3 on calcium overload. We adopted siRNA to interfere with BAG3 expression in H9c2 cardiomyocytes and used adenovirus to interfere with BAG3 expression (Ad-BAG3) in primary neonatal rat cardiomyocytes (PNRCMs) to clarify the role of BAG3 in mitigating MIRI by CE. The results showed that CE reduced calcium overload, and Ad-BAG3 had a significant regulatory effect on L-type Ca2+ channels (LTCC) but no effects on other calcium-related proteins. And BAG3 and LTCC were colocalized in myocardial tissue and BAG3 inhibited LTCC expression. Surprisingly, CE had no regulatory effect on LTCC mRNA, but CE promoted LTCC degradation through the autophagy-lysosomal pathway rather than the ubiquitination-protease pathway. Autophagy inhibitor played a negative regulation of cardiomyocyte contraction rhythm and field potential signals. Ad-BAG3 inhibited autophagy by regulating the expression of autophagy-related proteins and autophagy agonist treatment suppressed calcium overload. Therefore, CE promoted autophagy through BAG3, thereby regulating LTCC expression, inhibiting calcium overload, and ultimately reducing MIRI.


Assuntos
Cálcio/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Autofagia/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Masculino , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ácido Oleanólico/farmacologia , Ratos , Ratos Sprague-Dawley
14.
J Pharm Pharmacol ; 74(2): 282-291, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850055

RESUMO

OBJECTIVES: Myocardial I/R injury is one of the most serious complications after reperfusion therapy in patients with myocardial infarction. Remifentanil has been found to protect the heart against I/R injury. However, its underlying mechanism remains uncertain in myocardial I/R injury. METHODS: The myocardial I/R injury rat model was established by 30 min of ischaemia followed by 24 h of reperfusion. The animal model was evaluated by the levels of TC, ALT and AST and H&E staining. The binding of miR-206-3p and TLR4 was predicted and verified using TargetScan software, luciferase reporter and RNA pull-down assays. The functional role and mechanism of remifentanil were identified by ultrasonic echocardiography, oxidative stress markers, H&E, Masson and TUNEL staining and western blot. KEY FINDINGS: The rat myocardial I/R injury model displayed a significantly high level of TC, ALT, AST, TLR4, p-IκBα and p-p65 and the presence of disorganized cells and inflammatory cell infiltration. The model also showed increased levels of LVEDD, LVESD, MDA, fibrosis and apoptosis and decreased levels of EF, FS, SOD and GSH, which were reversed with remifentanil treatment. Knockdown of miR-206-3p damaged cardiac function and aggravated oxidative stress. miR-206-3p could directly bind to TLR4. TLR4 overexpression destroyed cardiac function, exacerbated oxidative stress, increased levels of p-IκBα and p-p65 and aggravated pathology manifestation affected by remifentanil. CONCLUSIONS: Our results elucidated that remifentanil alleviated myocardial I/R injury by miR-206-3p/TLR4/NF-κB signalling axis.


Assuntos
Cardiotônicos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Remifentanil/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo
15.
Pharmacol Res ; 175: 105986, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800627

RESUMO

During cardiac reperfusion after myocardial infarction, the heart is subjected to cascading cycles of ischaemia reperfusion injury (IRI). Patients presenting with this injury succumb to myocardial dysfunction resulting in myocardial cell death, which contributes to morbidity and mortality. New targeted therapies are required if the myocardium is to be protected from this injury and improve patient outcomes. Extensive research into the role of mitochondria during ischaemia and reperfusion has unveiled one of the most important sites contributing towards this injury; specifically, the opening of the mitochondrial permeability transition pore. The opening of this pore occurs during reperfusion and results in mitochondria swelling and dysfunction, promoting apoptotic cell death. Activation of mitochondrial ATP-sensitive potassium channels (mitoKATP) channels, uncoupling proteins, and inhibition of glycogen synthase kinase-3ß (GSK3ß) phosphorylation have been identified to delay mitochondrial permeability transition pore opening and reduce reactive oxygen species formation, thereby decreasing infarct size. Statins have recently been identified to provide a direct cardioprotective effect on these specific mitochondrial components, all of which reduce the severity of myocardial IRI, promoting the ability of statins to be a considerate preconditioning agent. This review will outline what has currently been shown in regard to statins cardioprotective effects on mitochondria during myocardial IRI.


Assuntos
Cardiotônicos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Cardiotônicos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitofagia/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Canais de Potássio/fisiologia
16.
Pharm Biol ; 60(1): 38-45, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34860639

RESUMO

CONTEXT: Ferroptosis was described as an important contributor to the myocardial ischaemia/reperfusion (MIR) injury, and britanin (Bri) was reported to exert antitumor and anti-inflammatory activities. OBJECTIVE: Our study explores the effect and mechanism of Bri on MIR damage. MATERIALS AND METHODS: The rat model of MIR was established by ligation of the left anterior descending coronary artery. Male Sprague-Dawley (SD) rats were divided into three groups: sham group (n = 6), MIR group (n = 6) and MIR + Bri group (n = 6; 50 mg/kg). Rats were intragastrically pre-treated with Bri or normal saline once daily for 3 days. To further verify the role and mechanism of Bri, H9C2 cells were subjected to hypoxia plus reoxygenation (H/R) to induce the in vitro model of MIR. RESULTS: Compared with MIR rats, Bri significantly decreased infarct area (22.50% vs. 38.67%), myocardial apoptosis (23.00% vs. 41.5%), creatine phosphokinase (0.57 U/mL vs. 0.76 U/mL), and lactate dehydrogenase levels (3.18 U/mL vs. 5.17 U/mL), concomitant with alleviation of ferroptosis. Mechanistically, Bri treatment induced the activation of the adenosine monophosphate activated protein kinase (AMPK)/glycogen synthase kinase 3ß (GSK3ß)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in vivo. In addition, the AMPK/GSK3ß/Nrf2 pathway participated in the regulation of glutathione peroxidase 4 (GPX4) expression, and silencing of Nrf2 attenuated the effect of Bri on H/R-induced cell injury. DISCUSSION AND CONCLUSIONS: Bri protected against ferroptosis-mediated MIR damage by upregulating GPX4 through activation of the AMPK/GSK3ß/Nrf2 signalling, suggesting that Bri might become a novel therapeutic agent for MIR.


Assuntos
Ferroptose/efeitos dos fármacos , Lactonas/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Sesquiterpenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
17.
Cells ; 10(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34943838

RESUMO

The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.


Assuntos
Vesículas Extracelulares/metabolismo , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/epidemiologia , Fatores Etários , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fatores de Risco , Caracteres Sexuais
18.
Eur Rev Med Pharmacol Sci ; 25(23): 7409-7417, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34919243

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the effect of dexmedetomidine administration on myocardial ischemia/reperfusion (I/R) injury in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). MATERIALS AND METHODS: Online databases including PubMed, the Cochrane Library, Web of Science, Medline, and EMBASE were searched for clinical trials that investigated the application of dexmedetomidine in CPB patients prior to May 2021. A total of 17 studies involving 866 patients were included in this study. RESULTS: The result of the meta-analysis showed that there was a significant difference in serum creatinine-kinase-MB (CK-MB) between the dexmedetomidine group and the control group at the end of the operation and 24 h after the operation. Compared to the control group, cardiac troponin I (cTn-I) concentration in the dexmedetomidine group was significantly decreased at the end of the operation, 24 h after the operation, and 48 h after the operation. There was also a significant difference between the dexmedetomidine group and the control group in the length of a patient's ICU stay. CONCLUSIONS: Dexmedetomidine can reduce CK-MB and cTn-I concentrations and shorten the length of ICU stays for patients undergoing cardiac surgery with CPB. It can also provide myocardial protection from I/R injury.


Assuntos
Ponte Cardiopulmonar/métodos , Dexmedetomidina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Procedimentos Cirúrgicos Cardíacos/métodos , Creatina Quinase Forma MB/sangue , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação , Traumatismo por Reperfusão Miocárdica/fisiopatologia
19.
Dis Markers ; 2021: 8709298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868398

RESUMO

OBJECTIVE: Myocardial ischemia-reperfusion (I/R) injury (MIRI) refers to the more serious myocardial injury after blood flow recovery, which seriously affects the prognosis of patients with ischemic cardiomyopathy. This study explored the new targets for MIRI treatment by investigating the effects of miR-190-5p and its downstream target on the structure and function of myocardial cells. METHODS: We injected agomir miR-190-5p into the tail vein of rats to increase the expression of miR-190-5p in rat myocardial cells and made an I/R rat model by coronary artery occlusion. We used 2,3,5-triphenyl tetrazolium chloride staining, lactate dehydrogenase (LDH) detection, echocardiography, and hematoxylin-eosin (HE) staining to determine the degree of myocardial injury in I/R rats. In addition, we detected the expression of inflammatory factors and apoptosis-related molecules in rat serum and myocardial tissue to determine the level of inflammation and apoptosis in rat myocardium. Finally, we determined the downstream target of miR-190-5p by Targetscan system and dual luciferase reporter assay. RESULTS: The expression of miR-190-5p in an I/R rat myocardium was significantly lower than that in normal rats. After treatment of I/R rats with agomir miR-190-5p, the ischemic area of rat myocardium and the concentration of LDH decreased. The results of echocardiography and HE staining also found that overexpression of miR-190-5p improved the structure and function of rat myocardium. miR-190-5p was also found to improve the viability of H9c2 cells in vitro and reduce the level of apoptosis of H9c2 cells. The results of Targetscan system and dual luciferase reporter assay found that miR-190-5p targeted to inhibit pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1). In addition, inhibition of PHLPP1 was found to improve the viability of H9c2 cells. CONCLUSION: Therefore, miR-190-5p can reduce the inflammation and apoptosis of myocardium by targeting PHLPP1, thereby alleviating MIRI.


Assuntos
MicroRNAs/fisiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas Nucleares/fisiologia , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Ecocardiografia , Mediadores da Inflamação/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
20.
Pak J Pharm Sci ; 34(4): 1409-1414, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34799315

RESUMO

The present study was conducted to identify the effect of vasopressin (AVP) on electrocardiographic changes produced by ischemia-reperfusion. Male rats were divided into seven groups (n=8-13) subjected to 30min ischemia and 120 min reperfusion. In protocol I (control group), saline was administered before ischemia. In protocol II, different doses of AVP (0.015, 0.03, 0.06 and 0.12µg/rat) were infused 10 min before ischemia. In protocol III SR49059 (1 mg/kg), was injected 20 min prior to ischemia with and without the effective dose of AVP (0.03 g/rat). Ischemia-induced arrhythmia and myocardial infarct size (IS) were measured. Different doses of vasopressin decreased IS. There were no significant differences in PR, QRS duration and &DGR;T/amp;DGR;ST ratio between control and intervention groups in ischemia. ST elevation was significantly increased in control and AVP 0.015, 0.03, 0.06 groups during ischemia. In AVP 0.12 group there was no significant difference in ST deviation between the baseline and ischemia phase. JT interval was significantly increased in control and antagonist group during ischemia. AVP 0.12µ/rat prevented the increase of JT interval in ischemia compared to the baseline. In summary, AVP mediated preconditioning improved ST resolution, prevented prolongation of JT interval and decreased the likelihood of subsequently ventricular arrhythmia.


Assuntos
Cardiotônicos/farmacologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Vasopressinas/farmacologia , Animais , Cardiotônicos/uso terapêutico , Relação Dose-Resposta a Droga , Eletrocardiografia/efeitos dos fármacos , Masculino , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Ratos Wistar , Vasopressinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA